The complex Sobolev space and Hölder continuous solutions to Monge–Ampère equations

نویسندگان

چکیده

Let X $X$ be a compact Kähler manifold of dimension n $n$ and ω $\omega$ form on . We consider the complex Monge–Ampère equation ( d c u + ) = μ $({dd^c}u+\omega )^n=\mu$ , where $\mu$ is given positive measure suitable mass $u$ an -plurisubharmonic function. show that admits Hölder continuous solution if only seen as functional Sobolev space W ∗ $W^*(X)$ continuous. A similar result also obtained for equations domains C $\mathbb {C}^n$

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

existence and approximate $l^{p}$ and continuous solution of nonlinear integral equations of the hammerstein and volterra types

بسیاری از پدیده ها در جهان ما اساساً غیرخطی هستند، و توسط معادلات غیرخطی ‎‏بیان شد‎‎‏ه اند. از آنجا که ظهور کامپیوترهای رقمی با عملکرد بالا، حل مسایل خطی را آسان تر می کند. با این حال، به طور کلی به دست آوردن جوابهای دقیق از مسایل غیرخطی دشوار است. روش عددی، به طور کلی محاسبه پیچیده مسایل غیرخطی را اداره می کند. با این حال، دادن نقاط به یک منحنی و به دست آوردن منحنی کامل که اغلب پرهزینه و ...

15 صفحه اول

Hölder estimates in space - time for viscosity solutions of Hamilton - Jacobi equations ∗

It is well-known that solutions to the basic problem in the calculus of variations may fail to be Lipschitz continuous when the Lagrangian depends on t. Similarly, for viscosity solutions to time-dependent Hamilton-Jacobi equations one cannot expect Lipschitz bounds to hold uniformly with respect to the regularity of coefficients. This phenomenon raises the question whether such solutions satis...

متن کامل

Sobolev Space Estimates for Solutions of Equations with Delay, and the Basis of Divided Differences

Sharp Sobolev space estimates for solutions of neutral difference-differential equations with arbitrary index are obtained without the assumption that the roots of the characteristic quasipolynomial are separated. The proof is based on the fact that the system of divided differences of the exponential solutions forms a Riesz basis. Moreover, it is proved that, under more general conditions, the...

متن کامل

Hölder continuity of solutions to the Monge - Ampère equations on compact Kähler manifolds

X ω = 1. An upper semicontinuous function φ : X → [−∞,+∞) is called ω-plurisubharmonic (ω-psh) if φ ∈ L(X) and ωφ := ω + dd φ ≥ 0. By PSH(X,ω) (resp. PSH(X,ω)) we denote the set of ω-psh (resp. negative ω-psh) functions on X . The complex Monge-Ampère equation ω u = fω n was solved for smooth positive f in the fundamental work of S. T. Yau (see [Yau]). Later S. Kolodziej showed that there exist...

متن کامل

Continuous Solutions to Algebraic Forcing Equations

We ask for a given system of polynomials f1, . . . , fn and f over the complex numbers C when there exist continuous functions q1, . . . , qn such that q1f1 + . . . + qnfn = f . This condition defines the continuous closure of an ideal. We give inclusion criteria and exclusion results for this closure in terms of the algebraically defined axes closure. Conjecturally, continuous and axes closure...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bulletin of The London Mathematical Society

سال: 2022

ISSN: ['1469-2120', '0024-6093']

DOI: https://doi.org/10.1112/blms.12600